Article

15.2. Принципиальная тепловая схема АЭС

Принципиальная тепловая схема АЭС объединяет технологические схемы установок, входящих в систему АЭС, рассмотренных в предыдущих главах. Она включает в себя только основные установки — реакторную, парогенераторную, паротурбинную, конденсационную и конденсатно-питателъный

тракт, на принципиальную схему наносят основные трубопроводы, соединяющие установки в единую технологическую систему, на линиях стрелками указывают направление потоков пара и конденсата.

Независимо от числа основных и вспомогательных агрегатов на принципиальной тепловой схеме однотипное оборудование изображается только один раз, но со всеми последовательно включенными элементами: например, при установке на АЭС нескольких турбин на принципиальной схеме изображают только одну; трубопроводы указывают только одной линией по направлению основного потока независимо от числа параллельных потоков, без поперечных связей между трубопроводами к отдельным агрегатам, если таковые существуют, и без трубопроводов вспомогательного назначения, например, дренажных с дренажными баками, системы технической воды и др. Многочисленную арматуру, входящую в состав трубопроводов или установленную на самих агрегатах, также не наносят, исключение составляет только арматура, имеющая принципиальное значение, например, регулировочные вентили 21 (рис. 15.1) и 3 (см. рис. 15.3).

Принципиальная тепловая схема является основой для теплового расчета АЭС, для решения различных задач, например, выдачи турбостроительному заводу технического задания на проектирование новой машины, выбора мощности и параметров основных агрегатов, установления тепловой экономичности АЭС в условиях иного в сравнении с заводским расчетом вакуума в конденсаторе и др. Составленная для каждого из этих вариантов принципиальная схема подлежит предварительному расчету, на основе которого можно уточнить основные характеристики оборудования: наиболее экономичное распределение регенеративного подогрева по ступеням, число ступеней подогрева, давление в деаэраторе и др. Из перечисленных выше задач и из гл. 3 следует, что в основном расчет тепловой схемы и различные ее варианты относятся практически только к турбинной установке. Поэтому принципиальные схемы АЭС ниже даются как тепловые схемы паротурбинной части станции.

На рис. 15.1 приведена принципиальная тепловая схема паротурбинной части двухконтурной АЭС с ВВЭР-440. На этой АЭС устанавливаются две турбины К-220-44, но так как тепловая схема принципиальная, то на рис. 15.1 показана только одна турбина, хотя турбина имеет два двухпоточных ЦНД, на рисунке показан только один поток одного ЦНД.

Параметры пара в отборах турбины могут быть взяты по рис. 8.1а. Между ЦСД и ЦНД установлен сепаратор и двухступенчатый промперегреватель. У каждой турбины их по две, но на рис. 15.1 показан один, так как схема принципиальная; вторая ступень перегревателя питается свежим паром.

Рис. 15.1. Принципиальная тепловая схема паротурбинной части двухконтурной АЭС с ВВЭР-440:
Рис. 15.1. Принципиальная тепловая схема паротурбинной части двухконтурной АЭС с ВВЭР-440:

1 — блок стопорно-регулирующих клапанов; 2 — уплотнение штоков клапанов турбины; 3 — уплотнение вала турбины; 4 — ЦСД турбины; 5 — сепаратор-промперегреватель; 6 — ЦНД турбины; 7 — подогреватели сетевой воды; 8 — насос теплосети; 9 — конденсатор турбины; 10 — конденсатный насос первой ступени; 11 — основной эжектор; 12 — эжектор уплотнений; 13 — конденсатоочистка; 14 — конденсатный насос второй ступени; 15 — ПНД; 16 — дренажный насос; 17 — охладитель дренажа; 18 — деаэратор; 19 — питательный насос с электроприводом; 20 — ПВД; 21 — регулятор давления; 22 — коллектор пара собственных нужд; 23 — БРУ-СН; 24 — БРУ-К

Турбинная установка имеет пять отборов пара из ЦСД (включая отбор после ЦСД) и три отбора пара из ЦНД, всего восемь отборов. Пар первого отбора в качестве греющего направляется в ПВД-3, в него же поступает и конденсат греющего пара промперегревателя второй ступени. Пар второго отбора поступает как греющий пар в первую ступень перегревателя и в ПВД-2. Пар третьего отбора питает ПВД-1 и коллектор пара собственных нужд. От коллектора пара собственных нужд пар поступает через регулятор для поддержания постоянного давления в деаэратор, а также на пароэжекторную машину, установленную в машинном зале, на выпарные аппараты спецводоочистки (СВО) и др. К коллектору пара собственных нужд имеется резервный подвод пара из паропроводов свежего пара через БРУ собственных нужд (БРУ-СН). В деаэратор каскадом сливаются также конденсаты греющих паров ПВД. Выпар деаэратора в качестве рабочей среды поступает в эжекторы — основной и уплотнений. Отборный пар из четвертой ступени используется как греющий пар

для ПНД-5 и для второй ступени подогревателя сетевой воды. (К сожалению, для подогревателей сетевой воды все еще употребляется термин "бойлер", вовсе не отвечающий существу процесса.) Турбина К-220-44 работает на нерадиоактивном паре, поэтому подогреватели сетевой воды — без промежуточного контура. Однако для большей радиационной безопасности давление в тепловой сети принимается большим, чем для греющего пара; для схемы, изображенной на рис. 15.1, давление воды в тепловой сети принято 0,6 — 0,7 МПа, поэтому при неплотностях в теплообменной поверхности переток воды возможен только из тепловой сети в греющий пар, но не наоборот.

Пар из пятого отбора используется в качестве греющей среды для ПНД-4, а пар шестого отбора — для ПНД-3 и для первой ступени подогревателя сетевой воды; пар седьмого и восьмого отборов подается соответственно в ПНД-2 и ПНД-1.

Конденсат греющего пара подогревателей сетевой воды каскадно сливается из второй ступени в первую и из нее в корпус ПНД-2. Конденсат из ПНД-5 сливается в ПНД-4 и из него затем закачивается дренажным насосом в тракт конденсата. Аналогично выполнена схема слива дренажа и для ПНД-3 и ПНД-2, однако для повышения тепловой экономичности на сливе из ПНД-3 установлен охладитель дренажа. Конденсат греющего пара ПНД-1 через охладитель дренажа сливается в конденсатор.

В конденсатор поступают пар после ЦНД и обессоленная добавочная вода. Образовавшийся конденсат после конденсатора проходит через охладители рабочего пара эжекторов (основного и уплотнений) и поступает на конденсатоочистку. Через конденсатоочистку (рис. 15.1) проходит 100% расхода турбинного конденсата, но не 100% расхода пара на турбину, так как конденсат греющего пара (за исключением ПНД-1) поступает непосредственно в конденсатно-питательный тракт.

Эжекторы размещены до конденсатоочистки, так как важна непосредственная близость основного эжектора к конденсатору, а небольшой прирост температуры конденсата перед ионообменными фильтрами практически не меняет температурного режима их работы. Конденсат рабочего пара эжекторов сливается в конденсатор: непосредственно для основного эжектора и через дренажный бак с последующей закачкой в конденсатор для эжектора уплотнений.

При внезапной остановке турбины имеется возможность сброса свежего пара непосредственно в конденсатор через соответствующую БРУ (через БРУ-К). На схеме показаны также подача пара на уплотнения турбины и их отсос. Так как у турбины К-220-44 ЦСД однопоточный, то это нашло свое отражение в организации уплотнения этой части турбины. Как и на всех последующих современных тепловых схемах АЭС в качестве рабочей среды эжекторов, основного и уплотнений, используется выпар деаэратора.

Принципиальная тепловая схема паротурбинной части двухконтурной АЭС с ВВЭР-1000 и тихоходной турбиной мощностью 1000 МВт приведена на рис. 15.2. Тепловые схемы на рис. 15.1 и 15.2 в целом однотипны. Однако есть и некоторые различия. Прежде всего различаются привод питательного насоса для ВВЭР-1000 применен турбопривод. На принципиальной схеме рис. 15.2 показана только одна из двух приводных турбин, мощность каждой 12 МВт. Конденсат приводной турбины сливается в основной конденсатор. Так как на принципиальной схеме указываются только постоянно работающие элементы, то на рисунке не показаны пусковые электронасосы; их установлено два с подачей по 150 т/ч. Пар, получаемый в парогенераторе в пусковой период, через БРУ-СН поступает в коллектор собственных нужд, от которого имеется резервное питание приводной турбины. После выхода на мощность основной турбины приводная турбина питается постоянно паром после СПП, как и показано на рис. 15.2.

Рис. 15.2. Принципиальная тепловая схема паротурбинной части двухконтурной АЭС с ВВЭР-1000:
Рис. 15.2. Принципиальная тепловая схема паротурбинной части двухконтурной АЭС с ВВЭР-1000:

1 — уплотнения штоков клапанов турбины; 2 — блок стопорно-регулирующих клапанов; 3 — ЦСД турбины; 4 — уплотнения вала турбины; 5 — сепаратор-промперегреватель; 6 — отсечная заслонка; 7 — ЦНД турбины; 8 — подогреватели сетевой воды; 9 — насос теплосети; 10 — конденсатор турбины; 11 — конденсатный насос первой ступени; 12 — основной эжектор; 13 — эжектор уплотнений; 14 — конденсатоочистка; 15 — конденсатный насос второй ступени; 16 — ПНД; 17 — дренажный насос; 18 — охладитель дренажа; 19 — деаэратор; 20 — питательный насос с турбоприводом; 21 — ПВД; 22 — коллектор пара собственных нужд; 23 — БРУ-СН; 24 — БРУ-К

Сепарат из СПП направляется в деаэратор, а конденсат греющего пара промперегревателя — из первой ступени в ПВД-2, а из второй — в ПВД-3. Питание ПВД паром осуществляется из первого, второго и третьего отборов турбины. Конденсат греющего пара ПВД-1 сливается в ПНД-4, а конденсат греющего пара ПВД-3 — в ПВД-2, из которого он перетекает в деаэратор, но может при нерасчетном режиме сливаться из ПВД-2 в ПВД-1 и вместе с дренажом ПВД-1 поступать в ПНД-4. Число ПНД уменьшено в сравнении с рис. 15.1, установлены два дренажных насоса и два охладителя дренажа. Это должно способствовать повышению тепловой экономичности турбины К-1000-60/1500 в сравнении с К-220-44. В противоположность этому подача конденсата греющего пара подогревателей теплосети в конденсатор, а не в один из корпусов ПНД, снижает тепловую экономичность и излишне загружает анионит конденсатоочистки. Пар на уплотнения турбины подается из деаэратора. По выполнению этой линии видно, что ЦСД для этой турбины двухпоточные.

Рассмотрение тепловых схем рис. 15.1 им 15.2 и их сопоставление показывают существенное развитие регенеративной системы для турбин двухконтурной АЭС. В значительной мере возможности повышения тепловой экономичности двухконтурной АЭС представляются уже исчерпанными. В схемах двухконтурной АЭС материалом теплообменных поверхностей для ПВД является углеродистая сталь, а для ПНД — часто латунь. Такое решение нежелательно по двум причинам. Во-первых, использование меди более целесообразно в других отраслях техники. Во-вторых, наличие оксидов меди в воде интенсифицирует коррозию сталей. В отдельных проектах несмотря на двухконтурность АЭС трубки ПНД выполняют из нержавеющих аустенитных сталей. Более правильным решением было бы применение для трубок ПНД стали 08Х14МФ или перлитных сталей (что уменьшит капиталовложения для АЭС). Опыт обычной теплоэнергетики свидетельствует о том, что в условиях воды высокой чистоты при дозировании окислителя (газообразного кислорода или перекиси водорода) в конденсат после конденсатоочистки такое решение вполне допустимо, оно целесообразно и для одноконтурной АЭС.

Особенности тепловой схемы одноконтурной АЭС связаны с радиоактивностью паров. В любой схеме таких АЭС обязательно: во-первых, включение в тепловую схему испарителя для получения нерадиоактивного пара, подаваемого на уплотнения турбин, во-вторых, использование промежуточного водяного контура между греющим паром и водой теплосети. Выполнение этих решений обязательно.

Основное отличие тепловых схем одноконтурной АЭС от двухконтурной АЭС связано с обеспечением надежного

водного режима реактора. В реактор двухконтурной АЭС извне поступает небольшое количество подпиточной воды, а продукты коррозии имеют своим источником ограниченный первый контур, выполняемый из нержавеющих аустенитных сталей. В реактор одноконтурной АЭС поступают большие расходы питательной воды, равные паропроизводительности установки, и продукты коррозии не только реакторного контура, но и всей регенеративной системы турбины. От естественных примесей воды реактор одноконтурной АЭС надежно защищает 100%-ная конденсатоочистка. Поэтому основное внимание при разработке тепловой схемы турбинной части одноконтурной АЭС уделяется решению проблемы удаления продуктов коррозии из тракта, предшествующего реактору. Эти вопросы решаются по-разному и не нашли еще своего окончательного решения. На первых блоках отечественных одноконтурных АЭС с РБМК-1000, стремясь уменьшить поступление продуктов коррозии в воду реактора, подогреватели высокого давления не устанавливали, все конденсаты греющего пара и слив из сепаратора направляли в конденсатор для последующей очистки их совместно с турбинным конденсатом на конденсатоочистке. Потерю тепловой экономичности, вызываемую сливом в конденсатор всех этих потоков, в какой-то мере компенсировали охладители дренажей, которые были установлены после каждого ПНД и соответственно усложняли схему. Для РБМК-1000 отказ от установки ПВД сохранился, но в тепловую схему АЭС с РБМК-1000 были внесены определенные изменения. Такая схема, осуществленная на многих блоках с РБМК-1000, показана на рис. 15.3.

Основные особенности этой тепловой схемы следующие; для уменьшения поступления продуктов коррозии в реакторную воду, как было сказано выше, ПВД не установлены, что приводит к определенной потере тепловой экономичности, так как температура питательной воды ниже оптимальной; охладитель дренажа оставлен только после ПНД-1; сепарат из СПП сливается в ПНД-3; конденсат греющего пара первой и второй ступеней перегрева направлен в деаэратор; все конденсаты греющих паров каскадом сливаются в конденсатор.

Такое решение приводит к заметной потере тепловой экономичности. Кроме того, из этого потока нужно удалять именно продукты коррозии, что требует только механической фильтрации, но не ионного обмена, осуществляемого в конденсатоочисткс. Поэтому очистка конденсатов греющих паров ПНД на конденсатоочистке приводит к перерасходу смол, в частности дорогостоящего анионита. Более рациональное (предпочтительное) решение по очистке конденсата греющего пара ПНД показано на рис. 15.4б в сравнении с решением, осуществленным по рис. 15.4a, отвечающим тепловой схеме рис. 15.3.

Рис. 15.3. Принципиальная тепловая схема паротурбинной части одноконтурной АЭС с РБМК-1000:
Рис. 15.3. Принципиальная тепловая схема паротурбинной части одноконтурной АЭС с РБМК-1000:

1 — питательный насос; 2 — деаэратор; 3 — регулятор давления; 4 — испаритель; 5 — уплотнения штоков клапанов турбины; 6 — блок стопорно-регулирующих клапанов; 7 — ЦСД турбины; 8 — сепаратор-промперегреватель; 9 — уплотнения вала турбины; 10 — ЦНД турбины; 11 — отсекающая заслонка; 12 — подогреватели промконтура теплосети; 13 — насос промконтура теплосети; 14 — конденсатор турбины; 15 — конденсатный насос первого подъема; 16 — основной эжектор; 17 — эжектор уплотнений; 18 — конденсатоочистка; 19 — конденсатный насос второго подъема; 20 — ПНД

Как видно из рис. 15.4а, конденсатоочистка состоит из катионитового фильтра К, играющего роль механического фильтра, и последующего фильтра смешивающего действия ФСД, в котором в смешанном слое катионита и анионита происходит ионный обмен. Исследования показывают, что в собственно турбинном конденсате содержание оксидов железа близко к их истинной растворимости; содержание оксидов железа в каскадном сливе конденсатов греющих паров составляет 35-40 мкг/кг, существенно превышая растворимость. Смешение двух потоков с разными физико-химическими показателями и их совместная очистка ухудшает степень выведения продуктов коррозии из тракта и удорожает конденсатоочистку. Более правильным является раздельная очистка этих потоков, показанная на рис. 15.4б. Наполнители для механических фильтров предлагаются различные. Важно то, что все они существенно дешевле ионообменных смол. Сопоставление рис. 15.4а и б показывает также, что сокращается вообще число

фильтров. Каскадный слив всех дренажей системы ПНД, показанный на рис. 15.3, является ошибочным решением, принятым ХТГЗ по согласованию с ЛАЭС, на которой устанавливались первые блоки РБМК. При этом экономичность турбинной установки и, следовательно, всей АЭС является наименьшей. Ошибочно также использование в качестве механического фильтра нерегенерируемого катионита. Это решение не только наиболее дорогое, но и наиболее неблагоприятное, так как даже нерегенерируемый катионит будет способствовать колебаниям значения рН, что неблагоприятно для одноконтурной АЭС. Более рационально использовать в качестве механического фильтра электромагнитный фильтр (ЭМФ).

На ЭМФ следует очищать от механических примесей (продуктов коррозии) также и все дренажи ПНД, а также и теплофикационной установки. Большое достоинство ЭМФ — их исключительная компактность, что связано с большой допустимой скоростью фильтрования (1000 м3/ч). Так, на турбину мощностью 750 МВт при полном расходе питательной воды достаточно трех фильтров диаметром 1 м и высотой 3 м. Установка ЭМФ показана на рис. 15.5.

В фильтр загружаются мягкомагнитные шарики диаметром 6 мм. При наложении электромагнитного поля ферромагнитные загрязнения воды, перемещаются к магнитным полюсам шариков, где и отлагаются. Немагнитные оксиды железа и других металлов и неметаллические загрязнения в большей мере адсорбируются отложившимися магнитными оксидами железа. При превышении сопротивления фильтра на 0,1 МПа (10%) фильтр автоматически переводится в режим промывки, по завершении которой также автоматически включается в работу. При работе фильтра задвижки 2 и 5 открыты, а задвижки 4, 6 и 7 закрыты. Фильтр выводится на промывку через 1 — 2 недели работы (в зависимости от роста сопротивления). При переводе в промывочный режим открывается задвижка 7 на байпасе фильтра. Затем закрываются задвижки 2 и 5 и открываются задвижки 4 и 6 для прохода воды в фильтр с последующим сбросом ее в дренажный бак. Промывка занимает около 2 мин. Введение фильтра в работу предусматривает закрытие задвижек 4 и 6, открытие задвижек 2 и 5 и закрытие задвижки 7.

Большим недостатком ЭМФ является выключение их из работы и выброс уже поглощенных продуктов коррозии в воду "залпом", что может произойти в отсутствии электронапряжения. Поэтому в схеме их установки всегда должны предусматриваться "страховочные" элементы после ЭМФ. Таким элементом является ФСД на рис. 15.6 и фильтр насыпного типа после ЭМФ на сливе всех дренажей (рис. 15.6).

Рис. 15.4. Водорежимные схемы турбинной установки одноконтурной АЭС с реактором РБМК-1000
Рис. 15.4. Водорежимные схемы турбинной установки одноконтурной АЭС с реактором РБМК-1000

Рис. 15.5. Установка ЭМФ:
Рис. 15.5. Установка ЭМФ:

1 — вода на очистку; 2, 4, 5, 6, 7 — задвижки; 3 — ЭМФ; 5 — очищенная вода

Рис. 15.6. Использование ЭМФ в сочетании со "страховочными" элементами:
Рис. 15.6. Использование ЭМФ в сочетании со "страховочными" элементами:

1 — ЭМФ; 2 — ФСД; 3, 4 — насыпной фильтр

В качестве наполнителя рекомендуется сополимер стирола и дивинилбензола, успешно используемый на многих ГРЭС.

К сожалению, для создаваемых ХТГЗ блоков с РБМК-1500 с согласия заказчика сепарат вообще (без очистки!) закачивают обратно в реактор.