Article

1.3. График электрической и тепловой нагрузок

Основное назначение тепловой (в том числе и атомной) энергетики заключается в том, чтобы народное хозяйство страны и нужды населения в электроэнергии были удовлетворены. В меньшей мере, чем обычная тепловая энергетика, должна быть удовлетворена потребность обеспечения и теплотой. В настоящее время считается преждевременным сооружение теплофикационных установок на базе атомных электростанций. Теплопотребление от АЭС как обязательное должно удовлетворяться только от нерегулируемых отборов паровых турбин, чтобы была полностью обеспечена потребность

Рис. 1.1. Суточный график коммунально-бытовой электрической нагрузки в рабочие дни
Рис. 1.1. Суточный график коммунально-бытовой электрической нагрузки в рабочие дни

жилого поселка АЭС. Поэтому основой проектирования является именно график электрических нагрузок.

По своим характеристикам промышленная и коммунально-бытовая электрические нагрузки существенно различаются как по объему, так и по переменности в течение суток. Потребности в электроснабжении характеризуются графиком электрических нагрузок. Зависимость нагрузки от времени суток называется суточным графиком электрической нагрузки. Он может составляться как для отдельной электростанции, так и для энергетической системы, в которую входит электростанция, или даже для большой объединенной энергетической системы.

Наиболее существенно изменение электрической нагрузки, связанное с коммунально-бытовыми нуждами. На рис. 1.1 представлен такой суточный график, из которого видно, что электрическая нагрузка зимой больше, чем летом и резко снижается в ночные часы. Наименьшее ее значение называют минимумом нагрузки. В дневные и вечерние часы наблюдается повышение нагрузки, причем более значительное изменение — зимой. Имеется два максимума нагрузки — утренний и вечерний. График электрических нагрузок должен обеспечиваться ("покрываться") в обязательном порядке. Поэтому стремятся провести все необходимые ремонты в летний период, чтобы практически все оборудование ЭС могло использоваться для обеспечения зимнего максимума. Этот максимум называют пиком нагрузки.

Для характеристики плотности графика нагрузок используют два коэффициента: α — отношение минимальной нагрузки к максимальной; β — отношение средней нагрузки к максимальной. Для коммунально-бытовой электрической нагрузки α = 0,45 как летом, так и зимой; коэффициент β существенно выше: β = 0,88 летом и 0,78 — зимой.

Основная электрическая нагрузка связана с потребностями промышленности. На рис. 1.2 приведен суточный график промышленной (2) и полной (1) нагрузок. Из графика видно, что и здесь нагрузка переменна в течение суток — имеются минимумы и максимумы. Однако плотность графика

Рис. 1.2. Суточный график промышленной электрической нагрузки в рабочие дни
Рис. 1.2. Суточный график промышленной электрической нагрузки в рабочие дни

на рис. 1.2 выше (α = 0,75 зимой и 0,76 — летом; β = 0,90 зимой и 0,89 — летом) и, кроме того, различие в коэффициентах α и β для условий зимы и лета практически отсутствует. Это объясняется определяющим влиянием более постоянной в течение суток промышленной нагрузки, значение которой примерно в шесть раз больше коммунально-бытовой.

Приведенная на рисунке полная электрическая нагрузка больше, чем отпускаемая потребителям. Часть электрической энергии расходуется самими электростанциями, Например для электроприводов многочисленных насосов и вентиляторов. Этот расход на собственные нужды (3) (рис. 1.2) составляет около 7%. Кроме того, в процессе передачи электроэнергии по проводам существуют потери непосредственно в электрических сетях, составляющие около 10%.

Промышленная электрическая нагрузка более равномерна при обслуживании предприятий, работающих в три смены; наименее равномерна для предприятий, работающих в одну смену.

Рис. 1.3. Полный суточный график электрической нагрузки крупного промышленного района в зимний период:
Рис. 1.3. Полный суточный график электрической нагрузки крупного промышленного района в зимний период:

I — потери в сетях и собственные нужды электростанции; II — коммунально-бытовая нагрузка; III — односменные промышленные предприятия; IV — электрифицированный транспорт; V — двухсменные промышленные предприятия; VI — трехсменные промышленные предприятия

Для построения полного суточного графика электрической станции или электрической системы необходимо кроме промышленной и коммунально-бытовой нагрузок учесть также потребление электроэнергии электрифицированным транспортом, потери электроэнергии в электрических сетях системы и расход электроэнергии на собственные нужды. Такой полный суточный график представлен на рис. 1.3.

Графики электрических нагрузок, изображенные на рис. 1.1 — 1.3, соответствуют рабочим дням недели. Электрическая нагрузка в субботу, воскресенье и праздничные дни снижается примерно вдвое по сравнению с рабочими. Это может потребовать останова ряда крупных энергетических агрегатов, что снижает их эксплуатационные показатели. Но, с другой стороны, это позволяет энергетическим системам проводить в эти дни профилактические ремонты оборудования и таким образом повышать надежность его работы.

Для электростанции или для энергетической системы суточный график электрических нагрузок строят по месяцам года, а затем на основании этих данных — годовой график электрических нагрузок по продолжительности. Этот график характеризует число часов в год τi, в течение которых нагрузка энергосистемы равна определенному значению Nэi.

Для построения графика нагрузок по продолжительности ломаные линии суточных графиков нагрузок заменяют ступенчатыми. Кривая Nэ = f(τ), полученная в результате такой суммарной обработки наиболее характерных суточных графиков нагрузок для годового периода, показана на рис. 1.4. Площадь под кривой Nэ = f(τ) соответствует годовому производству электроэнергии Эгод (кВт·ч) в рассматриваемой системе.

Нагрузку, характерную для наибольшего числа часов работы, называют базовой (I); для наименьшего — пиковой (III). Обычно в покрытии годового графика нагрузок системы участвуют агрегаты и станции разной экономичности. Распределяют суммарную нагрузку по отдельным станциям (агрегатам) так, чтобы обеспечить наиболее экономичную работу системы в целом. Этого можно достичь, если станции, имеющие меньшие затраты на топливо, будут загружаться большее число часов в году, а станции с большими затратами на топливо — меньшее. Станции, работающие с наибольшей возможной нагрузкой значительную часть года и тем самым участвующие в покрытии нижней части графика продолжительности нагрузки, называют базовыми; станции, используемые в течение небольшой части года только для покрытия пиковой нагрузки, — пиковыми. Кроме того, в системе имеется ряд электростанций, несущих промежуточную (II) нагрузку между базовой и пиковой.

Для покрытия пиковых нагрузок в системах, имеющих в своем составе гидростанции, наиболее целесообразно

Рис. 1.4. Годовой график электрических нагрузок по продолжительности
Рис. 1.4. Годовой график электрических нагрузок по продолжительности

использовать гидроаккумулирующие электростанции (ГАЭС). В периоды "провала" нагрузки ГАЭС работает в насосном режиме, затрачивая электроэнергию, вырабатываемую другими ЭС, для закачки воды из нижнего водохранилища в верхнее. Это выравнивает график. В период увеличения нагрузки ГАЭС работает в турбинном режиме, срабатывая уровень воды из верхнего водохранилища и сокращая участие тепловых ЭС в регулировании нагрузки. В качестве пиковых могут сооружаться также установки, специально предназначенные для этой цели и приспособленные для частых пусков и остановов. Тепловая экономичность пиковых электростанций обычно ниже, чем у базовых, из-за работы в переменных режимах, но это несущественно в связи со сравнительно небольшой выработкой ими электроэнергии. К числу пиковых установок относятся, например, газотурбинные.

Одна из основных характеристик электростанции — установленная мощность, определяемая как сумма номинальных мощностей электрогенераторов. Номинальная мощность генератора — это наибольшая мощность, при которой он может работать длительное время в режимах, оговоренных техническими условиями.

Переменность электрической нагрузки во времени заставляет выбирать мощность электростанции по максимуму нагрузки в зимнее время. Это означает, что в остальное время оборудование станции используется неполностью. Для оценки полноты использования установленного оборудования ЭС пользуются коэффициентом использования установленной мощности станции μуст — это отношение количества выработанной электроэнергии в течение года Эгод(кВт · ч) к тому количеству, которое могло быть выработано при годовой работе станции с установленной мощностью, т. е. к Nуст·8760 (кВт·ч):

μуст = Эгод/(Nуст·8760),              (1.1)

где 8760 — число часов в году.

Работа станции может также характеризоваться годовым числом часов использования установленной мощности

τуст = Эгод/Nуст,              (1.2)

Коэффициент использования установленной мощности и число часов использования установленной мощности связаны между собой соотношением

μуст = τуст/8760              (1.3)

Число часов использования установленной мощности зависит от того, в каком режиме работает станция. Для базовых станций число часов использования установленной мощности составляет обычно 6000 — 7000 (в среднем около

5500 ч/год), а для специальных пиковых агрегатов τуст может быть 2000 ч/год и менее.

Тепловые электростанции в отличие от гидравлических должны снабжать промышленность и население не только электрической, но и тепловой энергией. Это относится и к атомным электростанциям. Действующие в настоящее время атомные электростанции решают вопросы теплоснабжения практически только жилого поселка АЭС, или иногда и для близко расположенных предприятий, обеспечивающих занятость трудом членов семей сотрудников АЭС.

На рис. 1.5 и рис. 1.6 приведен график тепловых нагрузок для обеспечения горячего водоснабжения, отопления и вентиляции в зависимости от времени года.

Рис. 1.5. Годовой график тепловой отопительной нагрузки по месяцам: 1 — максимальные значения; 2 — минимальные значения
Рис. 1.5. Годовой график тепловой отопительной нагрузки по месяцам: 1 — максимальные значения; 2 — минимальные значения

Рис. 1.6. Годовой график тепловой нагрузки по продолжительности для отопления, вентиляции и горячего водоснабжения: I — отопительный период; II — только горячее водоснабжение
Рис. 1.6. Годовой график тепловой нагрузки по продолжительности для отопления, вентиляции и горячего водоснабжения: I — отопительный период; II — только горячее водоснабжение